Spring Glossary

A | B | C | D | E | F | G | H | I | L | M | O | P | R | S | T | W

 

17-7 PH Stainless Steel

This unique variety of stainless steel is precipitation hardened and provides high strength, hardness, excellent fatigue properties, good corrosion resistance, good formability, and minimum distortion upon heat treatment. In high-heat treated conditions, 17-7PH stainless steel possesses excellent mechanical properties. It is particularly well suited for aerospace applications. 

A

Active Coil (na):

Spring coils which are free to deflect under load.

AISI:

AISI serves as the voice of the North American steel industry in the public policy arena and advances the case for steel in the marketplace as the preferred material of choice. AISI also plays a lead role in the development and application of new steels and steelmaking technology.

Angular Relationship of Ends:

The relative position to one another of the plane of the Hooks (see below) or Loops (see below) of extension springs.

Annealing:

This process involves heating steel to a specified temperature and then cooling at a very slow and controlled rate. It is commonly used to soften a metal for cold working, improve machinability and enhance electrical conductivity.

ASTM:

ASTM International (American Society for Testing and Materials) is a globally recognized leader that develops and delivers voluntary consensus standards. ASTM standards are used worldwide to improve product quality, enhance health and safety, strengthen market access and trade, and build consumer confidence.

B

Baking:

Heating of electroplated springs to relieve hydrogen embrittlement caused by the plating process.

Bend Radius:

(neutral axis). The common term for this is the “K-factor.”

Bend Line: 

Is where the bend happens in the metal process that produces a V-shape, U-shape, or channel shape along a straight axis in metal materials. Most commonly use in sheet metal, also called a Fold Line

Buckling:

Bowing or lateral deflection of compression springs when compressed; related to the Slenderness Ratio (L/D) (see below).

C

Closed Ends:

Ends of compression springs where pitch of the end coils touch.

Closed and Ground Ends:

Similar to closed ends, except that the ends are ground to provide a flat plane.

Closed Length:

Length of a compression spring when under sufficient load to bring all coils into contact with adjacent coils; also known as Solid Height (see below).

Close-Wound:

Coil springs that are coiled in such a way that adjacent coils touch.

Coils Per Inch:

The distance from center to center of the wire in adjacent Active Coils (see above); recommended practice for specifying coil springs is to specify the number of active coils; also known as Pitch (see below).

Compression Spring

Helical compression springs have applications to resist applied compression forces or in the push mode, store energy to provide the "push". Different forms of compression springs are produced. There are conical, barrel, hourglass, or straight conical compression springs. These compression springs can be made with or without variable spacing between coils. Round wire springs can store more energy than rectangular wire compression springs.

D

Deflection (F):

Motion of spring ends or arms under the application or removal of an external load (P).

E

Elastic Limit:

Maximum stress to which a spring material may be subjected without permanent set.

Endurance Limit:

Maximum stress at which any given spring material will operate indefinitely without failure for a given stress.

Extension Spring:

Extension springs exert a pulling force or energy. They are usually close wound with initial tension and are generally manufactured from round wire. Extension springs may be produced with a wide variety of end types: hooks, loops, bends, crossbars, etc.

F

Flat Spring Prototype:

Custom flat springs are parts that are stamped, laser cut, or photo-chemically etched from a sheet of material. In most cases, the blanks are then formed, heat treated as necessary and finished to print.

Free Angle:

Angle between the arms of a torsion spring when the spring is not loaded.

Free Length (H):

The overall length of a spring in the unloaded position.

Frequency (natural):

The lowest inherent rate of free vibration of a spring itself with ends restrained;  usually measured in cycles per second.

G

Gradient:

Change in load per unit deflection, generally given in pounds per inch (lbs./in.) or Newtons per millimeter (N/mm); also known as Rate (see below).

H

Heat Setting:

Fixturing a spring at elevated temperature to minimize loss of Load (see below) at operating temperature. See also Hot Pressing (below)

Heat Treating:

In regard to metals, heat treatment is the process of heating and cooling metals to change their microstructure and to bring out the physical and mechanical characteristics that make metals more desirable. The temperature metals are heated to and the rate of cooling after heat treatment can significantly change metal's properties.

Helix:

The spiral form (open or closed) of compression springs, extension springs, and torsion springs.

Hooks:

Open loops or ends of extension springs.

Hooke's Law:

Load (see above) is proportional to displacement.

Hot Pressing:

Fixturing a spring at elevated temperatures to minimize loss of Load (see below) at operating temperature. See also Heat Setting (above).

Hydrogen Embrittlement:

Hydrogen absorbed in electroplating or pickling of carbon steels, tending to make the spring material brittle and susceptible to cracking and failure, particularly under sustained loads. Immediate post-process Baking (see above) is required for hydrogen embrittlement relief.

Hysteresis:

The mechanical energy loss that always occurs under cyclic loading and unloading of a spring, proportional to the area between loading and unloading load-deflection curves within the elastic range of the spring.

I

Iconel X-750:

This nickel-chromium-based alloy is precipitation-hardenable and is known for its corrosion and oxidation resistance and high strength at temperatures to 1300°F. It is used extensively in rocket-engine thrust chambers. Airframe applications include thrust reversers and hot-air ducting systems.

Initial Tension (Pi):

The force that tends to keep the coils of extension springs closed and which must be overcome before the coils will open.

L

Load (P):

The force applied to a spring that causes Deflection (see above).

Loops:

Coil-like wire shapes at the ends of extension springs that allow for attachment and force application.

M

Mean Coil Diameter (D):

Outside spring diameter (OD) minus one wire diameter (d).

Modulus in Shear of Torsion (G):

Coefficient of stiffness for extension springs and compression springs.

Modulus in Tension or Bending (E):

Coefficient of stiffness used for torsion springs or flat springs (a.k.a. Young’s Modulus).

Moment (M):

A twisting action in torsion springs which produces rotation, equal to the Load (see above) multiplied by the distance (or moment arm) from the load to the axis of the spring body. Usually expressed in inch-pounds (in.-lbs.) or Newton-millimeters (N-mm). See also Torque (below).

Monel 400:

This nickel-copper alloy is resistant to sea water and steam at high temperatures as well as to salt and caustic solutions. It exhibits characteristics like good corrosion resistance, good weldability, and high strength.

O

Open Ends Not Ground:

End of a compression spring with a constant pitch for each coil.

Open Ends Ground:

“Open Ends Not Ground” followed by an end grinding operation.

P

Parallel Form:

 All Belleville washers are facing the same direction. This will increase the load with the addition of each washer.

Passivating:

Acid treatment of stainless steel spring materials to remove contaminants and improve corrosion resistance.

Permanent Set:

material that is deflected (see Deflection, above) so far that its elastic properties have been exceeded and it does not return to its original condition upon release of Load (see above) is said to have taken a “permanent set”.

Pitch (p):

The distance from center to center of the wire in adjacent Active Coils (see above); recommended practice for specifying coil springs is to specify the number of active coils; also known as Coils Per Inch (see above).

Preset:

The process of closing a compression spring to Solid Height (see below); compression springs which have been coiled longer than the desired finish length so as to increase the apparent elastic limit. Also known as Remove Set (see below).

R

Rate (R or K):

Change in load per unit deflection, generally given in pounds per inch (lbs./in.) or Newtons per millimeter (N/mm); also known as Gradient (see above).

Remove Set:

The process of closing a compression spring to Solid Height (see below); compression springs which have been coiled longer than the desired finish length so as to increase the apparent elastic limit. Also known as Preset (see above).

Residual Stress:

Stress induced by set removal (see Set, below), shot peening (see Shot Peening, below), cold working, forming or other means.  These stresses may or may not be beneficial, depending on the application of the coil spring.

S

Series Form:

All the Belleville washers are stacked in opposite directions of each other. This will increase load deflection with the addition of each washer.

Set:

Permanent distortion which occurs when a spring is stressed beyond the Elastic Limit (see above) of the material.

Shot Peening:

A cold working process in which the material surfaces of coil springs are peened to include compressive stresses and thereby improve fatigue life.

Slenderness Ratio:

Ratio of spring length (L) to mean coil diameter (D). See also Buckling (above).

Solid Height (h):

Length of a compression spring when under sufficient Load (see above) to bring all coils into contact with adjacent coils; also known as Closed Height (see above).

Spring Back:

Springback is the change made to a metal part at the end of the forming process. When the part has been released from the forming tool residual stresses will cause the sheet metal to spring back slightly.

Spring Index:

Ratio of mean coil diameter (D) to wire diameter (d).

Squared and Ground Ends:

refer to Closed and Ground Ends (see above).

Stress Range:

The difference in a material’s operating stresses at minimum and maximum load.

Squareness of Ends:

Angular deviation between the axis of a compression spring and a normal to the plane of the ends.

Squareness Under Load:

As in Squareness of Ends (see above), except with the spring under load.

Stainless Steel Sheet:

This type of stainless steel is one of the most commonly used forms in the industry. Its qualities include high strength, good corrosion resistance, and excellent workability. It is used in numerous industries including chemical, petrochemical, food processing and fresh and saltwater marine applications.

T

Torque (M):

A twisting action in torsion springs which produces rotation, equal to the load multiplied by the distance (or moment arm) from the load to the axis of the spring body. Usually expressed in inch-pounds (in.-lbs.) or Newton-millimeters (N-mm). See also Moment (above).

Torsion

Spring: a torsion spring provides rotational energy or Torque (see above). Torsion springs can be single bodied or double bodied. Torsion springs require three points of support, with the body usually resting on a shaft or arbor. The design possibilities for the ends (or legs) of torsion springs are limitless. Stresses in torsion springs results in bending. Round wire is generally the preferred material for torsion springs, due to the cost of rectangular wire; however, though rectangular is more efficient in bending.

Total Number of Coils (Nt):

Number of active coils (n) plus the coils forming the ends of a coil spring.

W

Wahl Factor:

A factor to correct the stress effects of curvature and direct shear on a helical spring.

Peninsula Spring quality wire forms and metal stampings

Quick Turnaround on Prototypes is Our Specialty!
Contact Us